Page Content
GNSS Water Vapour Tomography
- Basic principle of GNSS tomography. The atmospheric water vapour observed in different directions is used to reconstruct its spatial distribution on a 3D grid.
[1]
- © M. Bender (GFZ)
The GNSS tomography is an attempt to utilize the
existing infrastructure of GNSS satellites and networks of geodetic
reference stations for meteorological applications. Small deviations
of the GNSS signals due to the atmospheric water vapour are used to
evaluate the amount of water vapour between a GNSS satellite and each
single GNSS ground station. Such kind of integrated information
obtained for a large number of different directions can be combined to
a spatially resolved field by means of tomographic reconstruction
techniques. This leads to temporally and spatially resolved field of
the atmospheric water vapour. The GNSS tomography is an innovative
remote sensing technique which works under all weather conditions with
a high temporal resolution. The GNSS tomography is based on the high
precision GPS data analysis as performed by the IGS analysis center at
the GFZ. The analysis software EPOS.P.V2 developed at the GFZ is not
only used to provide several geodetic products for high precision
positioning but is also a basic requirement for numerous applications.
Lately, the GPS analysis software has been extended to satisfy the
requirements of meteorological applications (see GASP project). Using
the advanced geodetic infrastructure available at the GFZ it is
possible to separate the GNSS signal delays caused by the atmospheric
water vapour from other effects which also modify the signals. These
signal delays are the basic input to the GNSS tomography. Currently,
the GFZ is processing the GPS data from more than 200 German GPS
stations on an operational basis. Approximately 1 million of slant
delays, i. e. signal delays along different transmitter - receiver
axes, are provided per day.
The slant delays are the basic information required to perform the
GNSS tomography. The signal delays due to the water vapour are
evaluated for a large number of different views through the
atmosphere. The reconstruction of a spatially resolved field from such
integrated inormations requires the solution of an inverse ill-posed
problem with incomplete data. Algorithms which solve these kind of
problems are usually referred to as tomographic techniques. The
tomography works on a spatial grid and tries to partition the integral
slant delays on the different grid cells. If sufficien data are
available a spatially resolved filed can be obtained. In case of the
GNSS tomography rather sparce data are available, compared with huge
volume of the atmosphere. Therefore, additional meteorological
observations are usually required to obtain reliable water vapour
distributions. Temporally and spatially resolved water vapour fields
provide important information for numerous meteorological
applications, e. g. nowcasting, numerical weather forecasts including
precipitation forecasts and climatology.
The GNSS tomography is a rather new technique in an early state of
development but with an enormous potential. New GNSS systems will be
available in near future as the European Galileo system becomes
operational in 2014 and the Russian GLONASS is currently completely
renewed. Even the American GPS will be extended by new signals and
services. In total, this leads to about 90 GNSS satellites, up to 30
of them visible at any time. Together with the rapidly growing ground
networks this leads to an increasing spatial coverage of the
atmosphere.
References:
[1] Bender, M. and Raabe, A. Preconditions to ground-based GPS water
vapour tomography, Annales Geophysicae, 2007, 25, 1727-1734.
[2] Bender, M.; Dick, G.; Wickert, J.; Schmidt, T.; Song, S.; Gendt,
G.; Ge, M. and Rothacher, M. Validation of GPS Slant Delays using
Water Vapour Radiometers and Weather Models, submitted,
2008.
rid.png